

Evaluation of the Antiulcerogenic Effects of N-Hexane Fraction of *Dialium guineense*, Wild Leaves on Indomethacin-Induced Ulcer on Adult Albino Wistar Rat

Samuel Chukwudi Chime^{1*}, Emmanuel Obiora Abonyi², Magnus Kelechi Duru¹, Darren Chukwuemeka Samuel¹

¹Department of Human Anatomy, Faculty of Basic Medical Sciences University of Nigeria College of Medicine Enugu Campus

²Department of Medical Biochemistry Enugu State University College of Medicine, Parklane Enugu

Abstract

Developing countries are burdened by a low standard of living, resulting in stressful conditions that expose the citizens to many health challenges, like peptic ulcer disease (PUD). Prevalence of fake and substandard drugs with the attendant side effects has resulted in the interest and use of ethnomedicine. This study aimed to evaluate the curative antiulcer effects of the n-hexane fraction of *Dialium guineense*, Wild (Fabaceae) (DG) leaves on the NSAID-induced model of PUD in adult Wistar rats. *D. guineense*, leaves were subjected to extraction, fractionation, phytochemical analyses, and determination of lethal dose (LD₅₀). Adult Wistar rats (36), divided into 6 groups of 6 per group, were used. Group 1 was a normal control, while groups 2 - 6 were induced peptic ulcer with indomethacin (40 mg/kg) via oral gavage. Group 2 animals served as ulcer control, group 3 received the standard drug (omeprazole 20 mg/kg), groups 4 - 6 received 100, 200, and 400 mg/kg of n-hexane fraction, respectively. The animals were treated 14 days after the administration of indomethacin. On the 15th day, blood samples were taken, and the animals were sacrificed by cervical dislocation, and their stomach were isolated for ulcer index and histopathology. The antioxidant activity of the fraction was investigated by examining its effects on superoxide dismutase (SOD), malondialdehyde (MDA), and reduced glutathione (GSH). catalase (CAT) activity was also assessed. Free acidity, total acidity, and pH values were estimated. Phytochemical analyses showed the presence of terpenoids, alkaloids, and steroids. The results of the LD₅₀ showed neither deaths nor signs of acute toxicity up to 5000 mg/kg dose. There was little or no ulceration in the n-hexane fraction treated groups. Antioxidant studies showed significantly increased values of SOD and significantly decreased values of MDA, supporting positive antioxidant activity; CAT and GSH values were not affected. Free acidity and total acidity were significantly decreased by 100 and 200 mg/kg of N-hexane fraction. Histopathology showed normal stomach histoarchitecture of the treatment group which compared favorably to the standard group,

Keywords: *Dialium guineense*, n-hexane fraction, indomethacin, ulcer, rats.

*Corresponding author:

drchukwudi@gmail.com

<https://doi.org/10.61594/tnpr.v6i4.2025.144>

Page No.: 303-313.

Volume: Volume 6 Issue 4, 2025

Trends in Natural Products Research

Copy Right: NAPREG

Received 28/10/25, Revised 6/11/25, Accepted 11/11/25, Published Online 22/12/25

Introduction

Most developing countries, like Nigeria, are plagued by poor leadership, which is evident in the living conditions of the citizens. Citizens suffer health challenges strongly linked to stress and bad environmental conditions, and one such disease is peptic ulcer disease. Peptic ulcer disease (PUD) is the erosion or loss of the mucosal lining of the epithelial surface of the stomach or duodenum, sometimes extending to the muscularis mucosa. PUD is caused by the action of acid pepsinogen complex on the mucosal layer, leading to gaps in the continuity of the mucosal layer. PUD is reported to be the most common disorder of the gastrointestinal tract, resulting mainly as a result of an imbalance between the gastric defensive and aggressive factors Mukhet *et al.*, 2019). Defensive factors against peptic ulcer are adequate blood flow, secretion of prostaglandins, mucin, bicarbonate, mucus bicarbonate layer, cellular regeneration, mucosal barrier, surface mucus secretion, and secretion of nitric oxide (Bongu and Vijayakumar, 2012. Thabrew and Arawwawala, 2016; Mehta, 2016; Thomas *et al.*, 2017). Aggressive factors were reported to be reactive oxygen species, increased secretion of hydrochloric acid and pepsin, inadequate dietary habits, free oxygen radicals, consumption of NSAIDs, alcohol, stress, and anxiety Cuevas *et al.*, 2011).

PUD is treated using drugs that are antacids, proton pump inhibitors, antihistamines, anticholinergics, etc. These drugs have side effects and other adverse reactions, but the problem with developing countries is deep-rooted corruption in the system. Fake drugs are rife, and underdosed drugs also create another problem for drug manufacturers and importers. Some agencies check the standardization of these drugs, but the problem of underdosing and fake drugs is widespread, affecting nooks and crannies in urban, suburban, and rural areas.

Consequent on this trend, people are increasingly resorting to ethnomedicine, which is not only accessible and affordable, but has no fear of fakeness. N-hexane, a nonpolar solvent, is commonly used to extract nonpolar phytochemicals like lipids, fats, oils, waxes, and certain terpenoids. It's also used in the defatting process to remove oils and waxes before extracting other compounds. Additionally, n-hexane can extract some alkaloids, flavonoids, saponins and phenols, though polar solvents extract these phytochemicals more efficiently. Some studies have shown the presence of other compounds like glycosides and tannins in n-hexane extracts, but these are less frequently reported as being efficiently extracted with this solvent.

The choice of solvent is crucial for successful phytochemical extraction. N-hexane is best suited for nonpolar compounds. For polar compounds, other solvents like methanol or ethanol are generally preferred.

Phytochemicals are naturally occurring bioactive compounds found in plants, often giving them their color, aroma, and flavour. They are not considered essential nutrients but are believed to contribute to human health by offering protection against various diseases. Phytochemicals act as antioxidants, protect against cellular damage, and may reduce the risk of chronic diseases, including cancer and heart disease. Siddiqui and Moid (2022) posited that nearly 80% of the world's population makes use of natural medicine in primary health care.

Many plants show anti-ulcer potential due to the presence of phytochemicals that have antioxidant and antimicrobial activities. They can improve mucosal defense, reduce acid production, and combat *Helicobacter pylori* (Agu *et al.*, 2023). Phytochemicals that have putative antiulcerative properties are alkaloids, tannins, flavonoids, terpenoids, glycosides, carotenoids, and saponins (Ghosh *et al.*, 2016., Agu *et al.*, 2023). The plant *Dialium guineense* Wild (family Fabaceae, subfamily Caesalpinoideae), grows in dense savannah forests, shadowy canyons and gallery forests. It is native to Nigeria, Benin Republic, Burkina Faso and other West African countries. It is called "icheku" (Ibo, Eastern Nigeria), "awin" (Yoruba, Western Nigeria), "tsayirarkurm" (Hausa, Northern Nigeria), velvet tamarind or black tamarind (English) and tamarinier noir (French). The leaves and stem bark are used as folklore remedies for the treatment of infections and other ailments such as diarrhea, severe cough, bronchitis, wound, stomach ache, malaria fever, jaundice, peptic ulcer disease (PUD), hemorrhoids, and prevention of cancer (Bero *et al.*, 2009., Gideon *et al* 2013). *D. guineense* leaves, also known as velvet tamarind leaves, possess significant nutritional potential. They are a source of various vitamins and minerals, including vitamins C and E, and are also rich in phytochemicals like alkaloids, tannins, phenols, and flavonoids. These components contribute to the plant's antioxidant and antimicrobial properties, potentially offering health benefits (Ginovyan *et al.*, 2017; Cheesman *et al.*, 2018). Terpenoids may also possess medicinal effects such as anti-mutagenic, anti-ulcer, antimicrobial, anti-malarial, and anti-cancer (Saxena *et al.*, 2013). They are a source of iron, magnesium, and copper. This study aimed to evaluate the curative antilulcer effects of the n-hexane fraction of *Dialium guineense* leaves on an indomethacin-induced model of PUD in adult Wistar rats.

Materials and Methods

Plant material

The plant leaves were collected from Agu Ibagwa Forest in Nsukka LGA and identified by Isaac Ossai, a taxonomist from the Biodiversity and Conservation Programme

(BDCP), Nsukka, 36 Aku Road, Nsukka. A specimen voucher with number BDCP/C24/002 was issued.

Extraction and fractionation of the plant material

The extraction procedure was carried out according to Girma *et al* (2015) with slight modifications. The leaves were shade-dried and pulverized. The pulverized leaves were macerated in 1000 ml of methanol for 48 h, and filtered with Whatman filter paper. The filtrate was concentrated using a rotary evaporator. The concentrated crude methanol extract was successively eluted with n-hexane, dichloromethane, ethyl acetate, and water using column chromatography technique. The n-hexane fraction was used in this study.

Qualitative and quantitative phytochemical analyses

The methods of Harbone (1978) and Trease and Evans (1989) were used to qualitatively and quantitatively determine alkaloids, flavonoids, tannins, total phenolics, glycosides, reducing sugars, steroids, and terpenoids.

Animals

Adult male Wistar rats (24) weighing 150 ± 20 g, and mice (20-25 g) were purchased from the Animal House of the Department of Pharmacology and Toxicology, University of Nigeria, Nsukka. The rats were housed in cages in the Animal House of Anatomy Department, University of Nigeria, Enugu Campus under standard environmental condition. The animals were fed with laboratory chow (Chikun feeds PLC) and drinking water *ad libitum* for a period of two weeks in order for them to acclimatize to the new laboratory environment prior the study. Natural light and dark cycles maintained, and temperature was kept between 27°C and 30°C.

Acute toxicity (LD_{50}) study

Mice were used for the acute toxicity determination according to Lorke's method (1983). Observations were made for any sign of toxicity and mortality for twenty-four hours; observations were made for any possible death(s).

Experimental Design

Thirty six albino Wister rats were used in the anti-ulcer study. They were randomly divided into six groups ($n=6$) as follows:

Group 1 Normal control

Group 2 Induction (indomethacin 40 mg/kg bw) + No treatment

Group 3 Indomethacin + Standard (omeprazole 20 mg/kg)

Group 4 Indomethacin + N-hexane Fraction of *D. guineenses* 100 mg/kg
Group 5 Indomethacin + N-hexane Fraction of *D. guineenses* 200 mg/kg
Group 6 Indomethacin + N-hexane Fraction of *D. guineenses* 400 mg/kg

The rats were induced with indomethacin (40 mg/kg) and then treated with fractions and the standard drug for 14 days. On the 15th day, the animals were fasted for 8 hours before they were sacrificed by cervical dislocation, and their stomachs were opened along the greater curvature and scored for degrees of ulceration according to the method of Urushidani (1979). The stomachs were then fixed in 10 % phosphate-buffered formalin for the histopathological examinations.

Determination of ulcer index

The stomachs were opened along the greater curvature and rinsed with water to remove gastric contents and blood clots, and examined by a 10 \times magnifier lens to assess the formation of ulcers. The number of ulcers was counted. Dashputre and Naikwade (2011) method of scoring of ulcer was made as follows:

Normal colored stomach (0), Red coloration (0.5), Spot ulcer (1), Hemorrhagic streak (1.5), Deep ulcers (2), Perforation (3).

The total mucosal area and total ulcerated area were measured. The ulcer index was then calculated using the following equation (Melese *et al*, 2011):

$$\text{Ulcer index} = 10/A$$

where A is the total mucosal area/ulcerated area. Percentage inhibition of ulceration was calculated thus:

$$\% \text{ inhibition of ulceration} = UIc - UIt / UIc \times 100$$

UIc=ulcer index control group, UIt=ulcer index test group

In vivo antioxidant studies

The *in vivo* antioxidants that were determined were superoxide dismutase (SOD), catalase (CAT), reduced glutathione (GSH), and the lipid peroxidation marker malondialdehyde (MDA). Catalase activity was assayed using the method of Aebi (1983). The product of lipid peroxidation (MDA) was assayed using the method of Wallin *et al.* (1993). The superoxide dismutase activities were determined using the method of Xin *et al.* (1991).

Determination of pH

Gastric acid was obtained by ligation of the pylorus and carefully aspirating the stomach gastric juice with a syringe. An aliquot of 1 ml of gastric juice was diluted with 1 ml of distilled water, and the pH of the solution was measured using a pH meter (Adwa AD8000) (Abebaw *et al.*, 2017).

Determination of total acidity and free acidity

This is based on simple acid-base titration. Gastric juice (1mL) was pipetted into a 100 mL conical flask and diluted with 9 mL distilled water. Two or three drops of Topfer's reagent then added and titrated with 0.01 N sodium hydroxide until all traces of red color disappeared and the colour of the solution was yellowish-orange. The volume of alkali added was noted. This volume corresponds to free acidity. Two or three drops of phenolphthalein were then added, and the titration was continued until a definite red ting appeared; the volume of alkali added was noted. The volume corresponds to total acidity. Acidity was expressed in terms of mEq/L (Vivek *et al.*, 2014).

Histopathological Examinations

The histopathological examinations of the stomach of the albino Wistar rats were done using the method of Drury *et al.* (1967). It involved fixing in formalin and washing of the tissues. Dehydration was achieved using alcohol, and the embedding was done in paraffin. They were subsequently cleared, infiltrated with paraffin wax, sectioned, mounted on the slides, and stained with eosin and haematoxylin. The

slides prepared were mounted on a photomicroscope one after the other and viewed at x 400 magnification of the microscope.

Statistical Analysis

Data were presented as mean \pm SD. One-way analysis of variance (ANOVA) was used to analyze the experimental data. Duncan multiple test range was used to separate the means and differences were considered significant at $P < 0.05$ using statistical package for service solution (SPSS) version 23.

Results**Results of the qualitative and quantitative analyses**

The result of quantitative phytochemical analyses indicate the presence of flavonoids, tannins and total phenolics alkaloids, steroids and terpenoids. Saponin and Glycosides were not detected. (Table 1)

Table 1: Qualitative and quantitative phytochemical results analyses

Phytochemicals	Bioavailability	Amount (mg/100g)	mean \pm SD
Saponin	ND	00.00	
Glycosides	ND	00.00	
Reducing sugar	++	155.44 \pm 3.39	
Alkaloids	++	304.03 \pm 45.48	
Flavonoids	+	164.06 \pm 45.11	
Tannins	+	21.07 \pm 4.85 ^a	
Total phenolics	+	6106.18 \pm 672.46	
Steroids	++	13.97 \pm 646.45	
Terpenoids	++	318.11 \pm 34.97	

Acute toxicity (LD₅₀) test

There was no mortality up to 5000 mg/kg indicating that the LD₅₀ of the extract is more than 5000 mg/kg

Effect of the fraction on indomethacin-induced ulcer

The stomachs of the fraction treated rats did not show any ulceration as opposed to the untreated control. Thus, the ulcer index could not be calculated.

Effect of the fraction on I the Antioxidants and Lipid Peroxidation Marker

The fraction caused a significant (P < 0.05) increase in the level of SOD and reduced glutathione (GSH) and Catalase (CAT) activities. The lipid peroxidation marker malondialdehyde (MDA) was significantly (P < 0.05) (Table 2).

Effect of the fraction on Free acidity, Total acidity and, PH

Treatment with the fraction did not significantly (p > 0.05) affect the pH however the free and total acidity were significantly decreased (P < 0.05) (Table 3)

Table 2: Effect of the fractions on *In vivo* Antioxidants and Lipid Peroxidation Marker

Groups	GSH (mg/dl)	MDA (mg/dl)	SOD (IU/L)	CAT IU/L
NC	0.88 ± 0.42 ^{ab}	0.74 ± 0.16 ^a	11.42 ± 0.07 ^b	1.05 ± 0.34 ^a
Indo	1.50 ± 0.30 ^b	2.05 ± 0.98 ^b	10.71 ± 0.44 ^a	2.69 ± 0.45 ^b
Omepr	0.58 ± 0.11 ^a	0.77 ± 0.13 ^a	11.41 ± 0.06 ^b	0.92 ± 0.10 ^a
Fr 100	0.85 ± 0.08 ^{ab}	0.66 ± 0.11 ^a	11.45 ± 0.04 ^b	1.04 ± 0.23 ^a
Fr 200	1.18 ± 0.46 ^{ab}	0.78 ± 0.09 ^a	11.48 ± 0.01 ^b	0.92 ± 0.49 ^a
Fr 400	0.77 ± 0.05 ^{ab}	0.92 ± 0.07 ^a	11.48 ± 0.01 ^b	0.91 ± 0.26 ^a

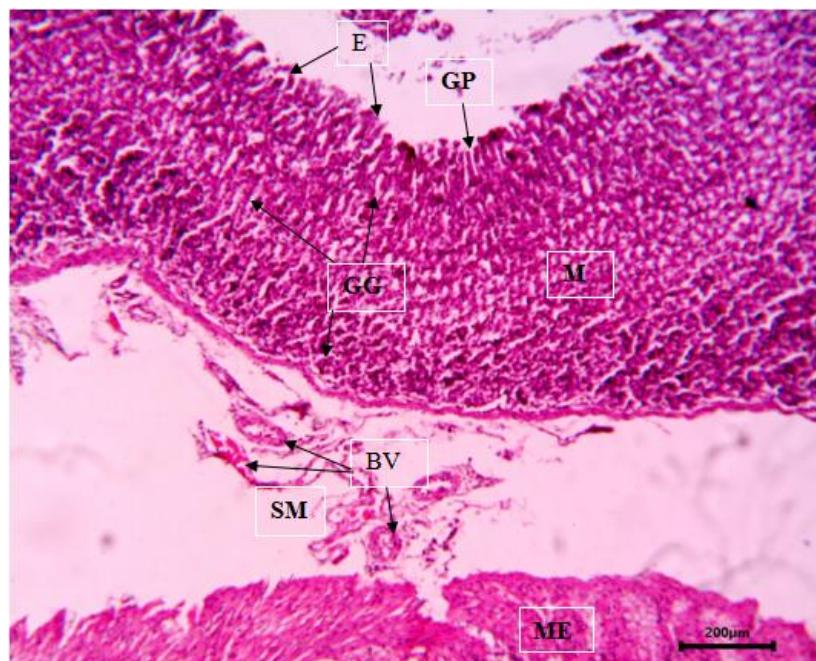
NC- Normal control, Indo-Induction (indomethacin 40 mg/kg) + No treatment, Omepr- (omeprazole 20 mg/kg), Fr 100- n-hexane fraction (100 mg/kg), Fr 200- n-hexane fraction (200 mg/kg), Fr 400-nN-hexane fraction (400 mg/kg). Superscripts that are different were considered significant (P < 0.05).

Table 3: Effect of the fraction on Free acidity, Total acidity and PH

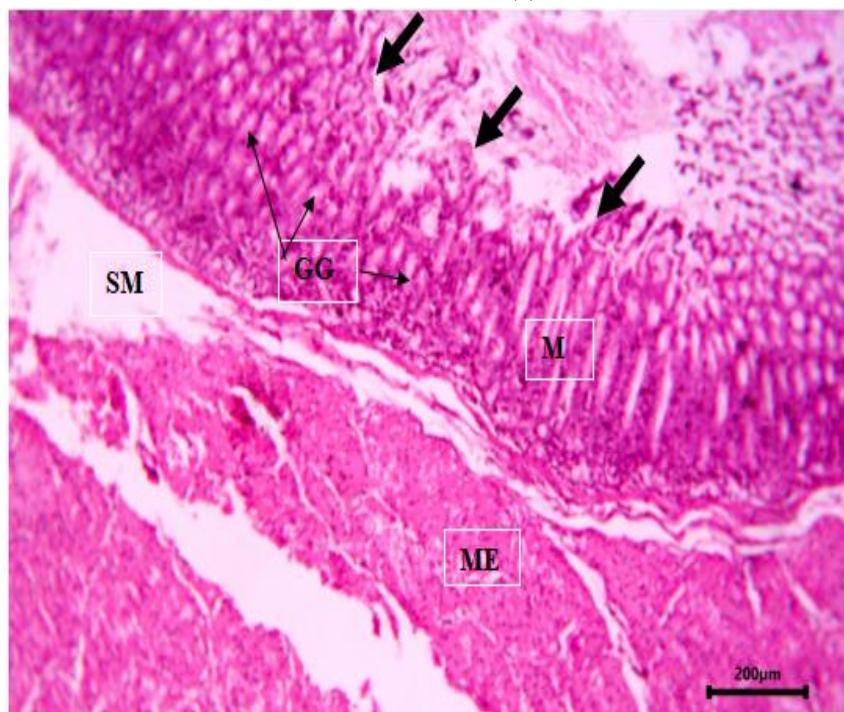
Groups	Free acidity (μM/μl)	Total acidity (μM/μl)	pH
NC	0.03 ± 0.01	0.05 ± 0.01	3.83 ± 0.44
Indo	0.15 ± 0.02 ^{b,c,d}	0.24 ± 0.07 ^{cb}	4.08 ± 0.15 ^{a,b}
Omepr	0.14 ± 0.04 ^{a,b,c,d}	0.22 ± 0.05 ^{cd}	3.47 ± 0.10 ^a
Fr100	0.01 ± 0.01 ^a	0.01 ± 0.01 ^a	3.5 ± 0.40 ^a
Fr200	0.01 ± 0.01 ^a	0.01 ± 0.01 ^a	3.4 ± 1.20 ^a
Fr400	0.10 ± 0.09 ^{a,b,c,d}	0.11 ± 0.10 ^{a,b}	4.1 ± 1.13 ^{a,b}

NC- Normal control, Indo-Induction (indomethacin 40 mg/kg) + No treatment, Omepr- (omeprazole 20 mg/kg), Fr 100- n-hexane fraction (100 mg/kg), Fr 200- n-hexane fraction (200 mg/kg), Fr 400-nN-hexane fraction (400 mg/kg). Superscripts that are different were considered significant (P < 0.05).

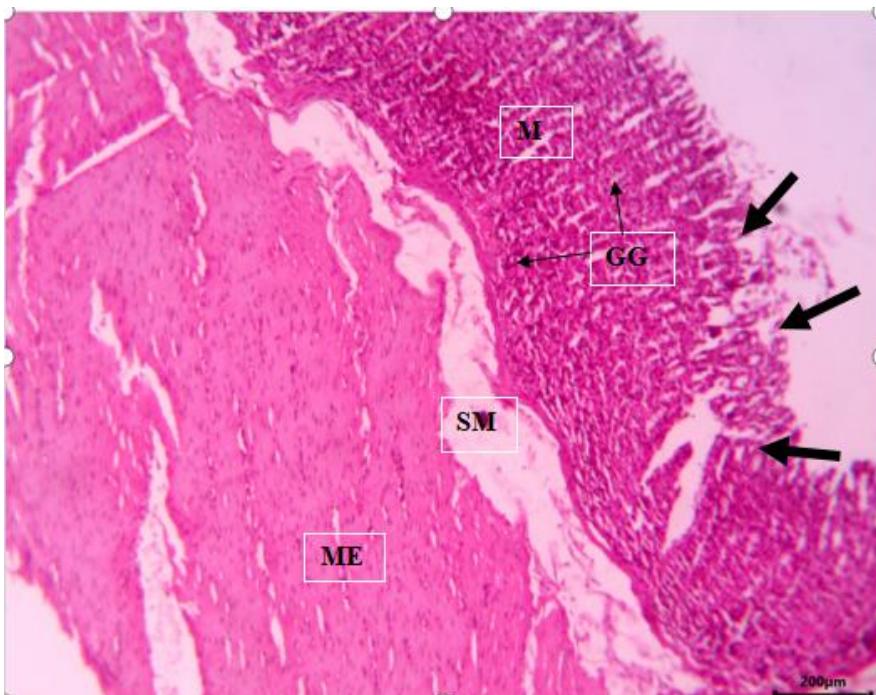
Histopathological studies

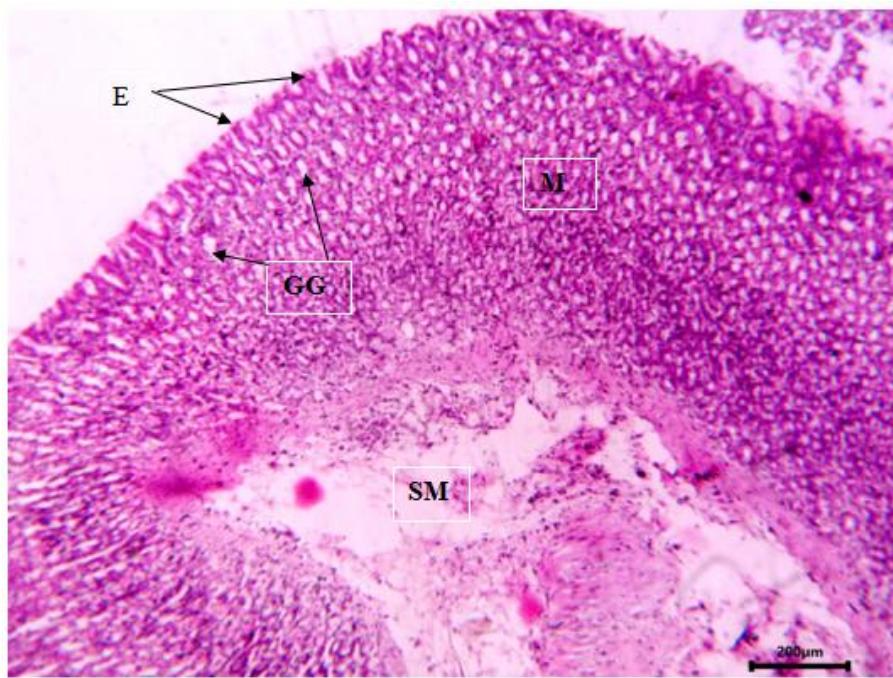

Photomicrograph the normal control rats showed normal stomach architecture with intact gastric mucosa (M), sub-mucosal (SM) and muscularis externa (ME) layer. Mucosa shows intact columnar epithelium (E), well-defined gastric pits (GP) and glands (GG). Submucosa contained connective tissue, while the muscularis externa displayed distinct inner circular and outer longitudinal muscle layer. No pathological changes such as inflammation or ulceration were (Figure 1). Administration of indomethacin resulted in shedding and ulceration in gastric epithelium and gastric pit. Sub-mucosal and muscularis external layers were intact. Submucosa had connective tissue, blood vessels, and nerve fibers, while the muscularis externa displayed distinct inner circular and outer longitudinal muscle layer (Figure 2)

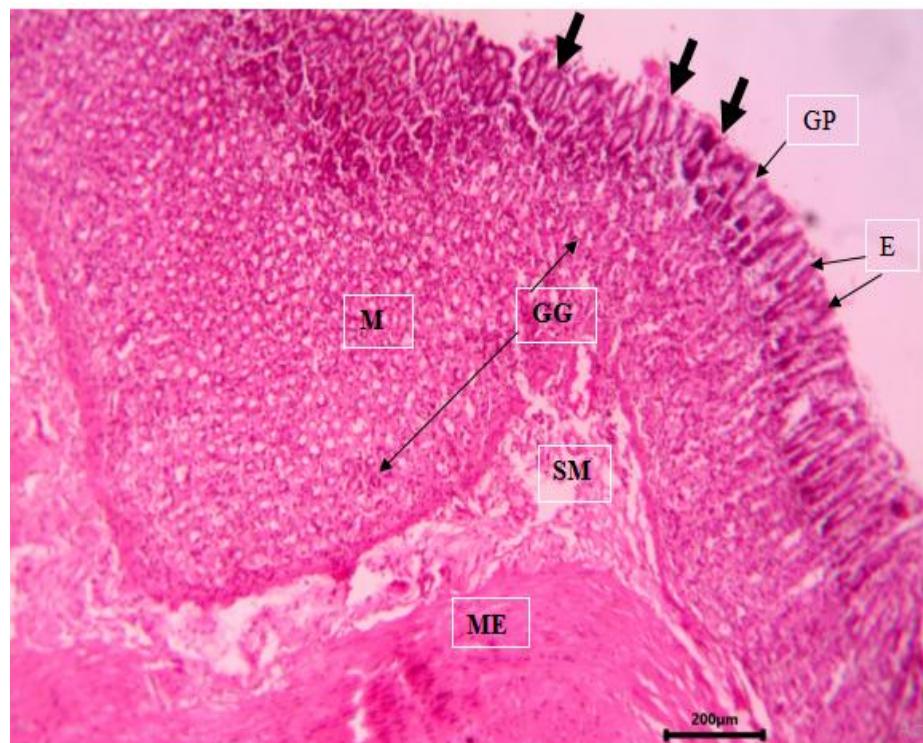
Photomicrograph of the stomach treated with omeprazole (40 mg/kg) showed mild shedding and ulcers in gastric epithelium. Sub-mucosal and muscularis externa layers were intact. Submucosa contained connective tissue while the muscularis externa displayed distinct inner circular and outer longitudinal muscle layer (Figure 3). The stomachs of the rats treated with the fraction (100 mg/kg) showed normal stomach architecture with intact gastric mucosa, sub-mucosal and muscularis externa layers. Mucosa had intact columnar epithelium, well-defined gastric pits and gastric glands. Submucosa contained connective tissue, while the muscularis externa displayed distinct inner circular and outer longitudinal muscle layer. No


pathological changes such as inflammation or ulceration were observed (Figure 4).

Treatment with the fraction (200 mg/kg) resulted in normal or lesion regenerated area on surface columnar epithelium (thick black arrows). The submucosa contained connective tissue, while the muscularis externa displayed distinct inner circular and outer longitudinal muscle layer (Figure 5). Photomicrograph of the stomach treated with the fraction (400 mg/kg) showed normal stomach architecture with intact gastric mucosa, sub-mucosal, and muscularis externa


layer. The mucosa had intact columnar epithelium, well-defined gastric pits, and glands (GG). Submucosa contained connective tissue, while the muscularis externa displayed a distinct inner circular and outer longitudinal muscle layer. No pathological changes, such as inflammation or ulceration were evident (Figure 6)


Figure 1: Photomicrograph of group 1 (Normal control) of the curative study H&E, x100


Figure 2: Photomicrograph of the indomethacin (40 mg/kg) only group H&E, x100

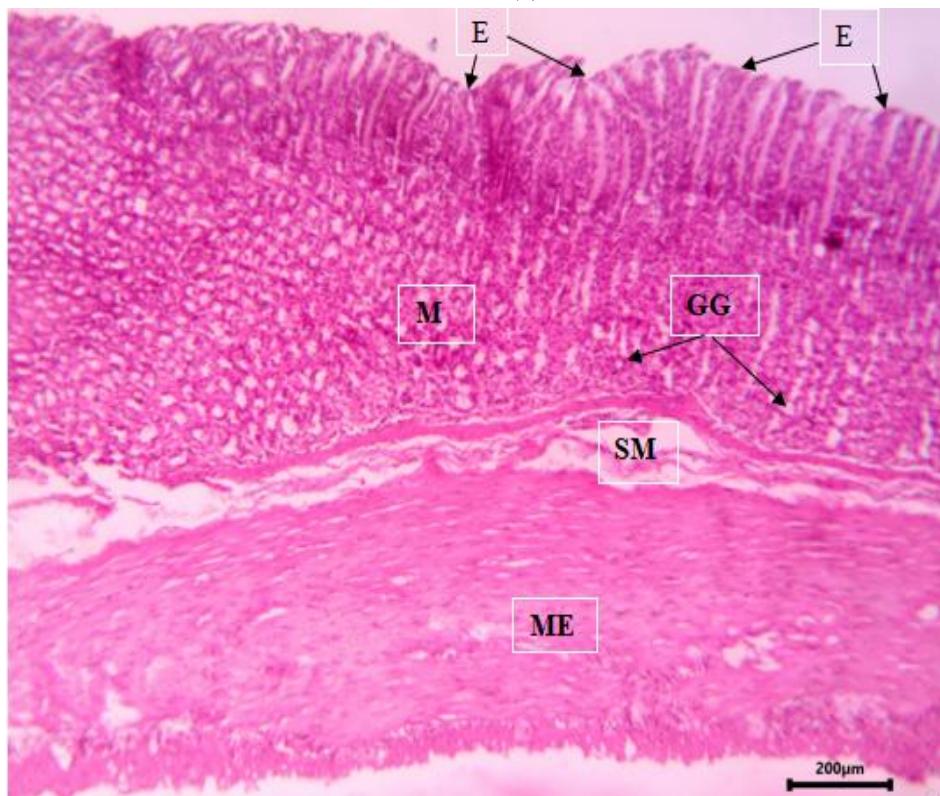

Figure 3: Photomicrograph of omeprazole (20 mg/kg) treated group H&E, x100

Figure 4: Photomicrograph of fraction (100 mg/kg) treated group H&E, x100

Figure 5: Photomicrograph of fraction (200 mg/kg) treated group H&E, x100

Figure 6: Photomicrograph of fraction (400 mg/kg) treated group H&E, x100

Discussion

The scourge of peptic ulcer disease is worsened in developing countries like Nigeria because of bad leadership, evidenced by so much hardship in the system with the attendant stress and poor environment, which have been observed as causative/predisposing factors in the development of PUD. Health facilities, especially in rural areas are riddled with PUD patients who lack the economic power to afford drugs for PUD. These drugs are not without their side effects and adverse reactions. This is also compounded by some of the drugs being fake or under dosed which is characteristic of corruption in developing countries. There is also the issue of access especially in the rural areas. Many resort to the use of ethno-medicine. This study, therefore, investigated the curative effects of n-hexane fraction of *D. guineense* on PUD. Chime *et al* (2025) posited that *D. guineense* could have pharmacological and other uses with LD₅₀ of more than 5000mg/kg. However, N-hexane fraction of *D. guineense* was employed in this study. N-hexane is non-polar therefore accommodating lipophilic phytochemicals such as steroids and terpenoids as was observed in the phytochemical analysis. The *in vitro* antioxidant results showed significant reduction in MDA values p and a significant increase in SOD values for the treatment group, however there was no significant changes in the values of GSH and CAT for the treatment group

which is at variance with other works (Agu *et al* 2023). These observations are likely as a result of different phenolic compounds and terpenoids present in N-hexane fraction of *D. guineense*. Different authorities have posited the ability of phenolic compounds to donate proton which leads to the scavenging of free radicals, reactive oxygen and inhibition of lipid peroxidation and its cytoprotective potential (Edeoga and Erieta, 2001). The findings in this study are in consonance with earlier reports (Fahmy *et al*, 2015; Suheryani *et al*, 2019) that reported elevated levels of MDA in the gastric tissue following administration of indomethacin. Also, the findings of this study support previous studies which found that the levels of SOD were significantly decreased in the gastric tissue of rats treated with indomethacin but significantly increased in the rats treated with their study fractions (Sabiu *et al*, 2015; Alkushi and Elsawy, 2017; Jambi and Khattab, 2019). However, there was a significant decrease in total and free acidity for at lower doses. This implies that N-hexane fraction at some doses have a neutralization effect probably due to the presence of terpenoids and steroids. This study is in agreement with the results of Obidike *et al*, (2024) who reported a significant decrease in free acidity by methanol extract and ethyl acetate fraction *D. guineense*. PH showed similar trend with a significant decrease between the

induction only group and the treatment group. The results of this study are at variance with the findings of Obidike *et al.*, (2024) on *D. guineense* leaf extract and fractions where there was an increase in pH values.

Conclusion

The n-hexane fraction of *Dialium guineense* exhibits significant potential as an antiulcerogenic agent and may offer an alternative therapeutic option for the treatment of peptic ulcer disease.

References

Abebaw M., Mishra B, Gelayee, DA (2017). Evaluation of anti-ulcer activity of the leaf extract of *Osyris quadripartita* Decne. (Santalaceae) in rats. *Journal of Experimental Pharmacology* 9: 1–11.
<https://doi.org/10.2147/JEP.S125383>

Aebi H (1984). Catalase in vitro. *Merthods in Enzymology*. 105:121-126.

Agu A, Dike U, Chime S, Ugwu A, Duru K (2023). Protective Effect of Ethanolic Leaf Extract of *Myrianthus arboreus* on Indomethacin Induced Gastric Ulcer in Adult Male Wistar Rats. *Journal of Medical Pharmaceutical and Allied Sciences* 12(2):5745-5755.

Alkushi AGR, Elsawy NAN (2017). Quercetin attenuates indomethacin-induced acute gastric ulcer in rats. *Folia Morphology* 76 (2): 252-261.

Bero J, Ganfen H, Jonville MC, Frederich M, et al. (2009). *In vitro* antiplasmodial activity of plants used in traditional medicine to treat malaria. *Journal of Ethnopharmacology* 122(3): 439 - 444.

Bongu S, Vijayakumar S (2012). Animal Models in Experimental Gastric Ulcer Screening: A Review. *International Journal of Pharmacological Screening Merthods* 2: 82-87.

Chime CS, Agu UA, Abonyi OE, Esom AE (2025). Investigation of Toxicological Profile of Methanol Extract of *Dialium guineense* in Albino Wistar Rats. *International Journal of Innovative Science and Research Technolog*, 4229-4238

Cuevas VM, Calzado YR, Guerra YP, Year AO et al (2011). Effects of Grape Seed Extract, Vitamin C and Vitamin E on Ethanol and Aspirin-Induced Ulcers. *Advances in Pharmacological Sciences* 20(11):1-6.

Dashputre NL, Naikwade NS (2011) Evaluation of anti-ulcer activity of methanolic extract of *Abutilon indicum* Linn leaves in experimental rats. *International Journal of Pharmaceutical Science and Drug Research* 3297100

Drury RA, Wallington A, Cameroun SR (1967). In Carleton's Histopathological Techniques. Oxford University Press, New York. Pp 1-420.

Edeoga HO, Eriata DO (2001). Alkaloid, tannin and saponin components of some Nigerian medicinal plants. *Journal of Medicinal and Aromatic Plant Science* 23: 244-249

Fahmy SR, Amer MA, Al-Kilid M. (2015). Ameliorative effect of the sea cucumber *Holothuria arenicola* extract against gastric ulcer in rats. *The Journal of Basic and Applied Zoology* 72:16-25.

Ghosh P, Biswas S, Duta A, Chatterjee S (2020). Phytochemical Analysis and Determination of in vitro Antioxidant and Antimicrobial Activity of *Phyllanthus amarus* Leaves Extracts. *International Journal of Botany Studies* 3(3): 483-490.

Gideon IO, Joachim E, John ME (2013). Antioxidant and antimicrobial activities of *Dialium guineense* (wild) leaf extract. *Pharmacy and Pharmacology Research* 1(1): pp 17.

Girma S, Giday M, Erko B, Mamo H (2015) Effect of crude leaf extract of *Osyris quadripartita* on *Plasmodium berghei* in Swiss albino mice. *BMC Complementary and Alternative Medicine* 20151518426077462

Harborne JB (1973). Phytochemical Methods: a guide to modern technique of plant analysis. 1st ed. Chapman and Hall, London. Pp. 107-150.

Jambi HA, Khattab HAH (2019). Potential antioxidant, anti-inflammatory and gastroprotective effect of grape seed extract in indomethacin induced gastric ulcer in rats. *International Journal of Pharmacology* 15: 209-218.

Johnlouis OI, Sunday AG, Adanma OC, Ngozi OJ (2024). Evaluation of Anti-Ulcerogenic Effects of the Crude Extract and Fractions of *Dialium guineense* Tree Bark in Ethanol-Induced Peptic Ulcer in Albino Rats. *Asian Journal of Biological Science* 17(3): 254-273

Mehta D (2016). Ulcer Review on Types, Anti-ulcer Drugs, Anti0-ulcer Medicinal Plants, Antiulcer Drug Market, Diagnostics and Current Global Clinical Trials Status. *Invention and Rapid Pharmacy Practice* 20(16):1-8.

Melese E, Asres K, Asad M, Engidawork E (2011). Evaluation of the antipeptic ulcer activity of the leaf extract of *Plantago lanceolata* L. in rodents, *Phytotherapy Research* 2581174118021298726

Mukheet A, Hussain MA, Hussain SKS, Tabassum G, Aliudi SM (2019). Anti-ulcer Activity of Medicinal Plants: A Review. *International Journal of Pharmaceutical Research* 54 (1): 96-102.

Obidike IJ, Aloh GS, Obike CA, Okechukwu, JN (2024). Evaluation of antiulcerogenic effects of the crude extract and fractions of *Dialium guineense* tree bark in ethanol induced peptic ulcer in albino Rats. *Asian Journal of Biological Sciences* 17 (3): 254- 273.

Okorie, N. H., Ali, I. J., Ugodi, G. W., Ikeh, G. O., Okonkwo, L. E., Umegbo, N. L. (2025). In vivo anti-inflammatory activity of *Combretum buchiense* leaf methanol extract in rats (paw oedema models). *Fudma Journal of Sciences* 9(7): 315-319.

Saxena M, Saxena J, Nema R, Dharmendra S (2013). Phytochemical Medicinal Plant. *Journal of Pharmacognosy and Phytochemistry*.1(6): 168-182.

Sabiu S, Garuba T, Sunmonu T, Ajani E et al (2015). Indomethacin-induced gastric ulceration in rats: Protective roles of *Spondias mombin* and *Ficus exasperate*. *Toxicology Reports* 2: 261-267.

Siddiqui A, Moid H (2022). An Introduction and phytochemical Analysis and their Types. *Der Pharmacia Lettre*. 14(2): 1-5.

Suheryani I, Li Y, Chen B, Li P et al (2019). Gastroprotective effects of *Dracaena cochinchinensis* (Lour). Against aspirin-induced gastric ulcers in rats. *International Journal of Pharmacology* 15: 343 -350.

Thabrew MI, Arawwawala LDAM (2016). An Overview of *In vivo and In vitro* models that can be Used for Evaluating Anti-gastric Ulcer Potential of Medicinal Plants. *Austin Biology* 1:1-9.

Thomas S, Femeesh M, Nafia K, Siyad M, Shrikumar S (2017). Pharmacological Review of Anti-ulcer Screening, *World Journal of Pharmacy and Pharmaceutical Sciences* 6:1369-1387.

Trease GE, Evans WC (1989). Pharmacognosy. 2nd Edn, Braille Tiridel and Macmillan publishers

Verbeure W, van Goor H, Mori H, van Beek A P et al (2021). The role of gasotransmitters in gut peptide actions. *Frontiers in Pharmacology* 12: 720703.

Vivek D, Semwal CB, Yadav NH (2014). Evaluation of anti-ulcer activity of *Clitorea ternatea* Leaves (Linn) extract in Wistar rats. *Indian Journal of Research in Pharmacy and Biotechnology* 2(3): 1225.

Wallin B, Rosengren B, Shertzer HG, Camejo G (1993). Lipoprotein oxidation and measurement of TBARS formation in a single microtitre plate its use for evaluation of antioxidants. *Analytical Biochemistry* 208:10-15

Xin Z, Waterman DEF, Henken RM, Harmon RJ (1991). Effects of copper status on neutrophil function, superoxide dismutase and copper distribution in stress. *Journal of Diary Science* 74: 3078.

This paper is published under Creative Common Licence BY 4.0

CITATION: Chime SC, Abonyi EO, Duru MK, Samuel DC (2025) Evaluation of the Antiulcerogenic Effects of N-Hexane Fraction of *Dialium guineense*, Willd Leaves on Indomethacin-Induced Ulcer on Adult Albino Wistar Rat Trend Nat Prod Res Vol 6(4). 303-313. <https://doi.org/10.61594/tnpr.v6i4.2025.144>